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In  this paper we consider the flow field induced by a periodic magnetic field in 
and about a conducting liquid drop immersed in an incompressible insulating 
fluid. It is assumed that a t  infinity the magnetic field varies with time t as cos wt, 
where w is a constant. This magnetic field is associated with a periodic electric 
field which produces a net electric stress, dependent on the spatial variables, 
normal to the drop surface. This stress sets up a flow field, in and about the liquid 
drop, that creates an appropriate viscous stress so that there is stress balance a t  
the drop surface. The flow field is periodic with angular frequency 2w. For small 
drop deformations the drop shape at  any instant is a spheroid. It is shown that 
for large w the amplitude of the velocity field for a conducting drop is approxi- 
mately independent of w and for a non-conducting drop it is proportional to w .  
The larger velocity amplitude for a non-conducting drop is probably due to the 
fact that in this case there is no dissipation of electromagnetic energy. The 
electric stress over the drop surface increases with w and it is suggested that the 
drop will burst at  large w unless the amplitude of the applied magnetic field is 
suitably decreased. 

1. Introduction 
At an interface between two media which are subjected to an electric field 

there is, in general, an imbalance in the electric field stress. In  the case of fluids 
this electric stress causes deformation of the interface and electrohydrodynamic 
motions. In  the literature particular attention has been paid to the electro- 
hydrostatics and electrohydrodynamics of liquid drops. Allan & Mason (1962), 
Garton & Krasucki (1964) and Taylor (1964), among others, showed that a liquid 
drop immersed in a fluid which is subjected to a uniform electric field becomes 
elongated in the direction of the field, taking an approximately spheroidal shape, 
so that the electric stress which is normal to the drop surface is balanced by the 
surface tension of the deformed drop. The drop usua.lly bursts at high fields. 
Brazier-Smith (1971) and Brazier-Smith, Jennings & Latham (1971) considered 
the case of an oscillating spheroidal drop, whereas Sozou ( 1 9 7 2 ~ )  considered the 
stability of a rotating spherical drop, in a uniform external electric field. 

When the fluid in which the drop is suspended is conducting the electric stress 
at  the drop surface has a tangential component as well (Taylor 1966) and this 
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generates a flow field in the drop and its surroundings. Taylor’s (1966) work was 
extended by Torza, Cox & Mason (1971) and by Sozou (1972b), who considered 
the case when the applied electric field is periodic. I n  that case the flow field 
set up has a steady and a periodic component; the latter is associated with drop 
surface oscillations and has a frequency twice as large as that of the applied 
electric field. Sozou (19723) showed that when the frequency of the applied 
electric field is large the induced flow field is in effect zero. Recently Sozou (1973) 
investigated in some detail the development of the electrohydrodynamic steady- 
state flow field considered by Taylor (1966). 

Here we consider a rather different set-up. We consider a liquid drop immersed 
in an insulating fluid which is subjected to a periodic magnetic field which a t  
infinity varies with time t as cos wt, where o is a constant. Experimentally such 
a configuration can be set up by an alternating electric current in a solenoid 
with the drop on the axis of the solenoid. This periodic magnetic field is associated 
with an electric field which forms closed circular loops about the axis of symmetry 
(axis of the applied magnetic field). Within the conducting drop an electric 
current is set up and the associated Lorentz force is rotational, but for liquid 
drops the magnetohydrodynamic flow field is negligibly small and will be ignored. 
[Magnetohydrodynamic flow effects induced in a liquid by a periodic magnetic 
field were considered by Sneyd (1971). His case dealt with a periodic magnetic 
field perpendicular to the generators of a fixed circular cylinder containing a con- 
ducting liquid. The cylinder is supposed to be immersed in a non-conducting 
medium.] In  the present paper it is assumed that the dielectric constant of the 
drop is different from that of the surrounding medium. The flow field is set up 
by the electric stress over the drop surface. This stress is normal to the drop 
surface and has a steady component and a component with angular frequency 2 0 .  
It turns out that for small drop deformations this stress has the same angular 
dependence as that associated with the application of a periodic potential dif- 
ference across the drop (Sozou 1972b), though here the tangential component of 
the net electric stress a t  the drop surface is zero. Thus, once the electric stress 
has been worked out, our problem reduces in effect to a special case of that con- 
sidered by Sozou (1972 b )  or, when a certain parameter is small, by Torza et al. 
(1971). 

2. The magnetic field distribution 
We consider an incompressible conducting liquid drop, assumed spherical, 

of radius a immersed in an insulating incompressible fluid extending to infinity. 
We use a spherical polar co-ordinate system (r,  8, $) with the origin a t  the centre 
of the drop. We assume that the fluid is subjected to a periodic magnetic field B 
which at infinity is parallel to the axis 8 = 0,  that is we assume that 

B, = B,(cos 8, - sin 8,O) e”wt, 

where B, denotes B a t  r = 00 and B, and o are constants. Such a field, for ex- 
ample, can be produced by an alternating ele.ctric current in a solenoid aligned 
with the axis 0 = 0,  7r and containing the liquid drop. I n  (1)  and subsequent 
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expressions we must take the real part of complex quantities. I n  terms of a 
magnetic stream function $ 

Let the suffix 1 refer to the insulating fluid surrounding the drop and the 
suffix 2 to  the liquid drop. Let po denote the magnetic permeability of free space 
and g2 the electrical conductivity of the drop (vl = 0) .  If we assume that the 
magnetic Reynolds number is small and the effect of the velocity on the electro- 
magnetic field is negligible $, and $2, in the quasi-steady state, are given by 

$l = B,fl(r) eiWtsin28, $2 = B,f,(r) eiwtsin2 8. (3) 

aB/at+vVxVxB = 0,  (4) 

V2$, = 0, ( 5 )  

The electromagnetic induction equation 

where r/ = l/pou is the magnetic diffusivity, gives 

On making use of (1)-(3) and the fact that  B is continuous and finite everywhere 
we obtain 

fl = & ( @ - A / r ) ,  

where A = - a3Jg(aa)/J4(aa), (9) 

a! = (1 - i) j3, p2 = w/2v2  and the J’s are the usual Bessel functions. The electric 
field E has only an azimuthal component, given by 

The electric current j has only an azimuthal component in the drop, given by 

poj2 = E2/q = -,-$(iwBo/vr)f2eiwtsin8. (11) 

The electric stress over the drop surface has only a normal component ( P ~ ) ~ ,  
given by 

(p rr ) E = - & c o k , E ~ + & c , k 2 E ~  = & ~ ~ a - ~ w ~ ( k , -  k,) B:[9(f2eiwt)l2sin20, 

or (prr)E = +coa-2w2(k2 - k,) @(A,  +Coe2iwt) ( I  - cos28), (12) 

where A, +%(C, ez iwt )  = [$( f2(a) e*w*)]2. 
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In  the special cases ap < 1 and ap B 1 we have the simple expressions 

Here eo is the permittivity of free space and k ,  and k ,  the dielectric constants of 
the medium and the drop. Thus, except in the special case k, = k,, there will be 
a net electric stress normal to the drop surface which is dependent on 8. We 
note that the surface-tension stress is normal to the drop surface and is given 
by T(rL1+rZ1),  where T is the surface tension and r ,  and r2 the principal radii 
of curvature a t  any point of the drop surface. Thus the steady component of the 
electric stress will induce a suitable steady deformation of the drop surface. 
The periodic component of the electric stress will induce a periodic motion of the 
drop surface and consequently a periodic flow fieldin thedrop anditssurroundings. 

It can be shown that, for liquid drops whose radii are a few millimetres, the 
magnetohydrodynamic flow field associated with the j x B force is negligible in 
comparison with that due to the electric field stress, except in the special case 
k, z k,, so it will be ignored. 

3. Flow field and hydrodynamic stresses 
Letp, v, p and v denote the pressure, kinematic viscosity, density and velocity 

(of the external medium or the drop). I f  we assume that the Reynolds number is 
small and the convection terms in the momentum equation negligible, this 
equation becomes 

[apt -+ v v  x v x 3 v = - vplp. 

The velocity field must obviously lie in meridian planes through the axis 8 = 0, n- 
and in terms of a stream function Y, 

The Upj that will produce a viscous stress with the appropriate angular de- 
pendence to balance the electric stress over the drop surface must be of the form 

Y .  3 3  = F.(r)e2~wtsin28cos8. (17 )  

Thus the velocity field oscillates twice as fast as the applied magnetic field. 
yri and the associated flow field, and viscous stress over the drop surface, 

have the same angular dependence on 8 as the corresponding expressions asso- 
ciated with electrohydrodynainic flow in and about a liquid drop (Taylor 1966; 
Torza et al. 1971; Sozou 19720). Thus for small drop deformations the drop 
surface will deform in a similar manner and form the spheroid 

r = ~ [ l i - ( e , + e ~ e ~ ~ ~ ~ ) ( 3 ~ o s ~ ~ - - 1 ) ~ ,  ( $ 8 )  

where the constants e3 and e4 satisfy the inequalities I E , ~ ,  1e41 < 1. 
At the drop surface the velocity and the tangential viscous stress pro must be 

continuous and the discontinuity in the normal viscous stress p,, must be 
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balanced by the electric and surface-tension stress. Thus at  the drop surface 
( r  = a )  we must satisfy the following equations: 

( 1 9 )  

V I A  = v,.6, (20)  

Pire  = Pzre, ( 2 1 )  

( 2 2 )  

ar/at = vj, F - vi. 6 arlr a8 z vi . F, 

(prr)E +Plrr = ~ 2 n .  + T('l'1+ ' /r2)* 

If we take the curl of (15) and make use of ( 1 6 )  and (17), we obtain 

The solution of (23), associated with a velocity field finite everywhere, is 

3'' = A,&-' + C, ~ Q r $ D g ( y ,  r ) ,  

F, = A, a4r3 + C, aQr4J3(y, r ) ,  

where A,, A, ,  C, and C, are constants to be determined, 

Dg(x) = & ~ [ i J g ( x )  - J-g(x)] ( 2 6 )  

and yi = ( 1  - i) (w/vi)*. The hydrodynamic stress components associated with 
the flow fields given by (17), ( 2 4 )  and ( 2 5 )  have been worked out by Sozou 
(1972b) and (here we are using a slightly different notation) a t  the drop surface 
are given by 

e-2iwtplrr = -a-1Vlpl{Al(8- +u;) +C,[3D3(a,) -2a,D~(u1)]}(3cos28- l), (27) 

e-2iot plre = -a-1v,p,{168,+C,[(11 -a;)Dg(al) - 2alD~(a,)]}sint9cos~, ( 2 8 )  

e-2iwtp2w = a-lv2p,{A,(2 - &A$) - C2[3J+(a,) - 2a,Ji(a,)]} ( 3  cos2 8 - I ) ,  ( 2 9 )  

e-2iwtp2re = - a-'~,p,(BAz + C,[( 11 - a:) J3(a,) - 2a24(a,)]} sin 8 cos 8, (30) 

where a1 = ay, , a, = ay, and a prime denotes differentiation. 
We note that in view of ( 1 8 )  

Y'(rF1+rg1) = 2T[1 +2(s3+e4e2iwt) (3cos28- I)]/a.  (31)  

If we substitute ( 1 2 )  and (31 )  in ( 2 2 )  and equate the steady part of the coefficient 
of cos28 on the two sides of the resulting equation we obtain 

e3 = ~ , ~ ~ ( k ~ - k , ) A , , B ~ / 2 4 a T .  (32) 

Thus if (k, - k,) A, > 0, e3 > 0 and the mean shape of the oscillating drop is 
a prolate (ovary) spheroid. If (k, - k,) A ,  < 0, the mean shape of the drop is that 
of an oblate (planetary) spheroid. Por example, in the cases at3 < 1 and a/? 1, 
A,, > 0 [see ( 1 3 )  and ( l a ) ]  and the mean shape of the drop is prolate or oblate 
depending on whether k, > k, or k, > k,. 

On applying the boundary conditions (19)-(22) and equating coefficients of 
e2iotcos20 in ( 1 9 )  and ( 2 2 )  and of e2i"tsinBcose in (20)  and ( 2 1 )  we obtain five 
linear algebraic equations connecting A,, A,, C,, C, and e4. The solution of these 
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equations is, of course, straightforward but, in general, A,, A,, C,, C, and e4 are 
lengthy and complex expressions and will not be given here. It is simpler, for 
a given set of data, to  pick up the real parts of (A,, A,, C,, C,, e4) e2iot, and evaluate 
the flow field by means of a computer. Below we evaluate Y, and Y, for the 
special cases (i) la,], la,i < 1 and (ii) la,], [a,] 1. 

(i) The case Ia,], la,] < 1 

This approximation implies that in (23) 2w/v is negligible in comparison with 
the rest of the operator. The solution of (23) then becomes 

E; = A,a4r-, + Cla2, 

F, = A,a-Ir3 + C,a-3r5. 

(24a) 

(25a) 

At the drop surface, the hydrodynamic stress components associated with (24a) 
and (25a) are given by 

(27a) 

W a )  

(29a) 

( 30a) 

e-2iotplrr = - a-1vlp1(8A, + 6C1) (3  cos2 8 - 1) ,  

e-2iwtplre = - 2a-lvlp,(SAl + 3C1) sin 8 cos 8, 

e-2iWtp2r,. = - a-lv,p,( - 2A, + C,) ( 3  cos2 8 - l) ,  

e-2iwtp2,.0 = - 2a-lv2p,( 3A, + SC,) sin 8 cos 8. 

Applying (19)-(22) and equating the coefficients of e2iotcos28 and of 
e2iwt sin 8 cos 8 we obtain 

A, = (6+9h)R ,  A ,  = -(19+16h)A, 

C, = -(16+19h)A, C, = (9+6h)A ,  e4 = i 5 ( l+h)h /aw,  

" 2 P 2  I en u3B: Cn( k,  - kl) 
VlP1' 

where h = - A = -  
6 (16 + 19h) ( 3  + 2h) avlplu - 20i(h + 1 )  T' 

The above relationships between A,, A,, C,, C, and c4 show that in this case the 
drop oscillation is out of phase with the liquid oscillation by a phase angle 471. 

Figure 1 (a )  shows streamlines of the flow field for the case \ail < I and h = 1. 
Note that the streamlines are permanent but, owing to periodicity, the intensity 
of the flow field changes with time and when it is zero the flow field reverses 
direction. 

apart from constant factors that can be absorbed in C, and C,. Thus 

Fl = Ala4r-2+C1a2e-i71r, 

F2 = A,a-lr3+C,a2eiY2r. 
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FIGURE 1. Some streamlines of the flow field in the first quadrant of a meridian plane. 
The streamlines in the other quadrants are obtained by reflexion. X = r c o s  S/a, 
Y = r sin @/a. (a) a2w/vj 1, h = 1. (b)  a2w]vj 9 1, h = O(1). 

Equations (24b)  and (25b)  can be obtained directly from the solution of 

which, for large I aj  1, is the approximate form of (23 ) .  

(25 b ) ,  apply the boundary conditions (19)-(22), equating coefficients of 
If we now substitute (33 )  and (34 )  in (27)-(30) and, making use of (24b)  and 

sin 0 cos 6 e2iwt and of cos2 6 e2iwt 

in the various expressions, after a little algebra, we obtain 

i e o w ( k , - k , ) B ~ C o  A ,  = A ,  = 2iwas - 
- a3(4pl + 6p, - 12T/a3w2)’ (35 )  

I n  deriving (35 )  and (36 )  we have assumed that h is O(1) and have neglected 
quantities of order ten in comparison with (all and la,/. We have also assumed 
that the denominator on the right-hand side of ( 3 5 )  is not zero. When these 
conditions are not satisfied the expressions (35 )  and ( 3 6 )  for A,, A,, e4, C, and C2 
will need modification. 

From (24b) ,  (25b) ,  (35) and (36 )  it is obvious that, for lull and la2/ B 1, 
F, w A l a 4 r 2 ,  F, z A2a-43 and, apart from a thin region close to r = a, the 
flow field is essentially potential. The fluid vorticity is concentrated in a thin 
viscous layer about the drop surface. The thickness 6 of the viscous layer is 
O[(v/w)*J. Streamlines of the flow field for this case are shown in figure 1 (b) .  As 
for the case /a1 / ,  la2/ < 1, the streamlines are permanent but the flow field 
changes periodically with respect to time. 
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Equations (14), (16), (24b), (25b) ,  (35) and (36) show that for a given set of 
data as w + co the amplitude of the velocity field is approximately independent 
of w. This is due to the fact that a t  the drop surface for large w the viscous stress, 
N vi$./Sz-wF,, is proportional to w and so is the electric stress balancing it. 
Thus4  [orA,in (246) andA,in (25b) l  andvjareapproximatelyindependentofw. 
Similar considerations apply to the case of a liquid drop subjected to a periodic 
potential difference (Sozou 19726). In  that case the electric field stress over the 
drop surface remains finite as w 3 00 and the intensity of the associated flow 
field decreases as l/w. 

When the liquid drop is non-conducting C,, given by (13), is independent of w 
and for large w the flow field is proportional to w .  This is due to the fact that in 
this case no electromagnetic energy is dissipated by the liquid drop. 

The above analysis assumes that the drop deformation and fluid velocity 
are small, thus for large w it will remain valid provided that the electric current 
inducing B, is appropriately decreased. We note from (32) that for a given 
drop-external fluid pair the steady drop deformation is proportional to 
w2A,Bi ( N w2C,Bi) and from (16)) (24b), ( 2 5 b ) )  (35) and (36) that the amplitude 
of the flow field is proportional to wBiC,. Thus if we increase w and decrease B, 
so that the drop deformation remains small in the limit when w -+ 03 the velocity 
field will be zero. If, of course, we go on increasing the frequency of the applied 
magnetic field without interfering with its magnitude the drop deformation and 
the stress at the drop surface will increase and our analysis will not be valid. 
The drop surface will be unable to stand the increased stress and will break up. 
It would be interesting to see the theory proposed above tested experimentally 
and find out the conditions under which the drop bursts. It appears to us that 
the proposed arrangement for testing the theory, an alternating current in 
a solenoid containing the drop, is fairly simple. 
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